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New exact solutions are derived for the equations of plane-parallel isentropic 
flow of gas with polytropic equation of state in a gravitational field. It is 

shown that when the adiabatic exponent exceeds two these solutions define a 

mixed flow of supersonic and subsonic streams in infinite channels of special 

form. An exact solution of the unstable problem of dispersion of gas into 
vacuum at infinitely increasing speed is obtained. 

1. Stable isentropic plane-parallel flows of inviscid gas with polytropic equation 
of state in a gravitational field are defined by a system of equations of the form [l ] 

(1.1) 

where r&k are components of the velocity vector, c is the speed of sound, and ak 
are constants which define action of gravity forces. 

Let us consider the potential case in which system (1.1) reduces to a single equation 
for the velocity potential @ (a+, zs) and the speed of sound is determined by the 

Bernoulli integral 

@)1”@ii + 2 @@@is + @a2Q22 + a,@,, + a,@, - (y - i) X (1.2) 

[K - alzl - a2z2 - l/2 (@l" + @a211 (@ll + @22) = 0 

(@,i = a@lasi, @ik = aw /aqaz,, K = const) 

c2 = (y - 1) [K - ~1x1 - (32x2 --/2p12 + @22)1 (1.3) 

Applying to (1.2 ) the Legendre transformation 

v = (&Xi + 0,X2 - CD (1.4) 

we obtain for the new unknown function V(%, u2) Pl = Ul, 02 = 4 *e 

Monge- Ampere equation 

Ul"V22 - 2 w2V2, + ~,~Vll + blul + a2u2HVllV22 - V122) - (1.5) 

(Y - I) [K - aIV, - a,V,-Y2 (u12 -t uz2)l (VII + V,,) = 0 
The solution is reestablished in terms of coordinates *I and 2, by formulas 

v, = $9 vs = 5s (vk = dv/aUk, v11, = a2v/&%&) (1.6) 

We seek for Eq. (1.5) the class of exact solutions in the form of a third power poly- 
nomial in ui and us 
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v (Ul, 242) = 2 + 2 + o<zc, aikduakt aik = c0nst (1.7 1 
. . 

The constant uoo in (1.7) is unimportant and for the remaining oik we obtain 

from (1.5) a nonlinear system of ten equations with nine unknown ail, (O<i+ 
k < 3) and parameters al, %, and Y. Without affecting the generality we 

set CZ~ = c~s = CC (the force of gravity acts along the bisectrix of the first coordin- 

ate ahgle). The system of four equations for the determination of the leading coeffi - 

cients aso, a12, azl, and aos is independent (it does not contain remaining ai,k ). 

By setting 

6aa,, = y,, 6aao3 = ya, 2aa,, = q, 2aa,, = z2 0.8 1 

that system can be expressed in the form 

where thesymbol 1 t-f 2 indicates that the remaining equations are obtained by the 
cyclic permutation of subscripts 1 and 2. 

The problem of determining leading coefficients of representation (1.7 ) is thus re- 
duced to the problem of determining all points of intersection of for second order sur- 

faces defined by system (1.9) in the four- dimensional space Yl7 Y2, 21, 22. 

We shall present a complete analysis of solutions of system ( 1.9). 
First, we carry out the linear transformation of variables in (1.9) (rotation of co- 

ordinates ) by introducing new variables &, Ea, Q, and Q by formulas 

Es = Yl - Y27 Ea = 21 - 37 rll = Yl + Ya, qa = 21 + 22 

In these coordinates system (1.9 ) assumes the form 

(1.10) 
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~fnP;ein;remIinear combinations 4 (F,+ - F,-) = 0 
= 

El [(Y - 4) rll + viz -!- Y - 11 + E2 (rll + 2rls + 
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and 4 (F,- - F,+) 

y+l)=O (1.12) 

El [PY - 1) rla - Y - II + E, I(2 - Y> 71 + (Y + 1) "I8 - 

y+51=0 

We shall now consider two cases : 

1”. (517 52) = (0, Oh and 2 ‘. (El, E,) # (0, 0). 
In case 1’ we obtain for the unknown Q and 11s from the equations F,+ = 0 

and Fi- = 0 the system 

F:‘= ~~~2+~~,a+~~~~e+(~--)~~+(~+1)rle=0 (1.13) 

G’ = + Q* + ‘q qas + (3~ - 2) ~1~2 + (y + 1) l11 + 

I?? - 5) ?a = 0 

The linear combination (y + 1) Fi+’ - (y - 1) F,-’ = 0 yields the relationship 

rl2 [(r" - 3y + 3) q.J + (y2 - 3y + 1) ?Jl - 2 (2y - I)1 = 0 (1.14) 

Equating in (1.14 ) the second term to zero, from Eqs. (1.13 ) we obtain for rl2 a quad- 
ratic equation. Its solution in case 1 a presents the following possibilities : 

rll = - 2, qa = 0 

71 = 
(WW-TY), 

(Y--1)2 
rl = r(2y-1) 

a 
(Y--P 

3tY Q=-- Y-i 
3-Y ’ %= 3--y (Y#3) 

and in case 2 ’ from (1.12 ) we have 

41 
-ET=- 

tll+%+Y+1 
(Y---1)%+Y%+Y--- 

with vi and q2 related by the formula 

(Y - i) (Y - 2) b-l2 - q12) + 2 (- y2 Y!- 5Y - 
2(-y2+3y- 1) rl2 + 4 (2Y - 1) = 0 

(1.15) 

(1.16) 

(1.17) 

(1.18 > 

3) rl1+ (1.19) 

The case in which the numerator and the denominator vanish in (1.18 ) when 

$ = Y++2, Q- Y-P 
Y-2 y _ 2 (Y $12) (1.20) 

yields after the analysis of compatibility of Eqs. (1.11) Y = 1 or Y = 1/2 . 
Hence this case can be eliminated. 

If in (1.19 ) y = 2, then from Eqs. (1.11) for q, and Vs we have only the 
possibility (1.15) but, then, & = Es = 5, where E is an arbitrary number. Be- 
cause of this we consider below (1.19) for Y # 2. The second equation relating 

Q and Q is obtained from (1.11) , taking into account that in (1.11) the sum of 

all terms containing first powers of E, and Es are zero owing to (1.12 ) .Then from 
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Eqs. (1.11) for F,+ = 0 and F,- = 0, follow relation 

in (1.13)) we have 

(“l’ and E;’ which are defined 

F;- 
=- (1.21) 

F;* 

which with the use of (1.18) we reduce to the form 

Y (Y - lPlls i- (Y - 1) (5Y2 - 5Y - 2) Q2rla + (Y - lJ2 x 
(7Y - 4) WIZ + (Y - 1) (3~~ - 7~ + 6) qa3 + 2~ (Y - 1) x 

(1.22 1 

(Y - 2) r112 + 4 (Y3 - 4Y2 + Y + 1) %%I + 2 (Y3 - 5Y2 + 
4~ - 6) qs2 - 4~ (Y - 1) rl~ - 4~ (Y + 1) 712 = 0 

Then, setting rll -j- Q = Q and using (1.19) for representing Q and q2 in 
the form 

%,a = {(Y - 1) (Y - 2) q2 t 2 r(y +- 1) (2 - y) + 2y - 1 q _t (1. 23) 
4 (2Y - I)} (2 (y - 2) [(y - 1) q - 21>-’ 

we obtain from (1.22) a fifth power equation for the determination of q , Owing to 

its unwieldiness that equation is not presented here. Its roois are of the form 

Q1= -22, Qe= 2 
2 

y--2' q3 = q4 = qs = - 
Y--l 

(1,241 

The case of q = 43.4,s when denominators in (1.12) vanish is of no interest, 
since it follows directly from (1.19) that y = 2. When q = q1 = - 2 we have 

71 = - 2, q2 = 0, El = E, = E 
(1.251 

where E’ is an arbitrary number. 

The case of q = q2 corresponds to the already considered possibility (1.20 ) . 

Thus for the leading coefficients (1.8 ) it is necessary to consider the three possi - 

biIities (1.25 ) , (1. I.6 ) , and (1.17 > . 

We pass to the analysis of the system for coefficients at quadratic terms in (1.7 ) . 

It follows from (1.6) that it is always possible to obtain al,, = sol = 0 by asuitable 

transfer of the coordinate origin. Setting 

2aa20 = p, 2aao, = v, aull = h (1.26) 

it is possible to have a system of equations which must be satisfied by p, v , and 3L 

of the form 

P - h” + (y - 1) (IL + A) (P + v) = 0 (p WV), (1.27 1 
22,h -t_ 2v + (y - 

y,v + z+ - 
1) P/2 (Y2 + 2, + 1) (p + v) + 

(92 + ZaHp + Ql =o (I-2, pLc*v), y,p + z2v - 22,h + y,v - 
22,k - 2h + (y - 1) [(Zl + 22) (II, + v) + (Yl + 22) c 

(P + v + k/a + 21) (v + Ql = 0 

System (1.27 ) has the solutions ~1 = v = h = 0, and its simple analysis shows 

that there are no other solutions for all &!, and zk, determined by (1.10) in terms 

of Er and qkV that correspond to (1.25), (1.16), and (1.17 ) when y > 1. Hence 
only third power terms remain in formulas (1.7) and their coefficients are determined 

either by (1.25), (1,16), or (1.17). 
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2, Let us consider the physical meaning of the derived variants of the solution of 
Eq. (1.5 ), For each of these solutions to have a real meaning it is necessary to establish: 

1) the positiveness of the right-hand side of formula (1.3) which defines the square 
of the speed of sound ; 

2 ) the pcesibility of inversion of formulas f 1.6 ) , i. e. the possibility of passing from 
the hodograph plane in which the solutions are derived, to the physical plane Xl, Za; 

3 ) the absence of limiting lines in the flow field. 
Let us consider all three solutions from these aspects and establish related fiow pat- 

terns by determining their streamlines and lines of constant density of gas, 
In the case of (1.25 ) 

E-2 
a3o = 12a, a03 = 

ES-2 F 

-12a' 
al2 = cx2% = - 

4a 

Using (1.3 ) and (1.6 ) we find that the speed of sound is identically zero, hence 
this possibility must be rejected. 

In the case of (1.16 ) 

a30 = ao3 = (%7--1)P--Y> Y f%J - 1) 
i2c(Y-_1)a 7 a1s = arl = 4u(Y_t)2 

and from (1.3 ) we obtain 

ea = - WY-l) IYh2tu22) 4 2(%7-- i)w21 

(2.2) 

(2.3) 

which shows that in the hodograph plane the lines of constant speed of sound are hyper- 
bolas with asymptotes 

ug = %Ulr rlrt=Y-“(1--2yjl:l/(Y--1)(3Y--1)) (2.4) 

Since the discriminant of the trinomial in (2.3 ) is positive for all Y, the right- 
hand side of (2.3 ) is nonnegative in the sectors contained in the second and fourth quad- 
rants formed by the asypmtotes (2.4) in the plane ulr u2 , 

Calculating the Jacobian J by formula (1.3 ) we obtain 

Consequently, the transition to the x1, z2 -plane is always possible and there 
are no limiting lines in the flow ( J = 0 only at point (Ui, Us) = (0, 0) ). 

The transition to the physical plane xi, x2 is effected by formulas 

2-Y 
flh u2) = fafU2, al)= Tax2 +Yulua+ +u2" 

Since the constant K in (2.5 ) is immaterial, we set K = 0. 
Integration of the equation of streamlines 

&,lU, = dx&, 

(2.5) 
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yields for these the following parametric formulas: 

si=c,,(l--u(a u2-/- 
I 

2(2;-1L+ Ip,(l, u) (i=l, 2) (2.6) 

a= _ 2(Y--1) 
3y-1 ’ B=-g& 

where the parameter u E (q_, q+), and for a particular streamline CA = const. 
Along the straight lines 

Xs = Ti3 (2.7) 

the speed of sound is zero and thestreamlines asymptotically approach these with U+ Q. 
Streamlines 1, and 1, , and asypmtotes Sk are shown in Fig. 1 in the hodo- 

planes for y = 1.4 and y = 3 by solid and dash lines t graph and the xl, ~.a 

respectively. 

Fig. 1 

The flow region T comprises the whole of the third quadrant (density indefinitely 

increases along the quadrant bisectrix with increasing distance from the coordinate ori- 
gin 1, and is bounded by segments of asymptotes S, that separate the flow field 

from the vacuum zone W. When y < 2 the flow is supersonic throughout T , 
while for y > 2 two sonic lines ml and ?r~s appear in it ( merging for y = 2 

at the bisectrix X1 = Xs > so that the supersonic stream rising from infinity against 

the force of gravity is decelerated, becomes subsonic after crossing line m, and, then, 

after crossing line rrz2 is accelerated and becomes again supersonic. 

In the case of (1.17 > we have 
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a30 = G-J3 = - 
3-I-r Y--l 

12a(3--) ’ a12 = a21= ha(3__) 

ca = (r-l)a @ 
2 (3 - y) 1 - W 

J=- 4 
- - UlU2 + 

Y--l 
uss 

(2.6) 

Hence y needs to be considered only in the range 1< y < 3. Formulas for 
passing to the xl, zs -plane are of the form 

xi = 
gi (Ul. u2) 
2a (3 - y) (i = 1, 2) (2.9) 

k?l(Ul, u2) = g2(u2, Ul) = - 
Y--i +~~+(~-l)ulu2+~u22 

The lines of constant speed of sound c = 6 are straight lines in the hodograph 
plane and parabolas 

1 (3--)a 
Xl + xa = - - 

@ (Y+l)a 
(X1 - 4’ - +s 

in the XI:,, Xs -plane. 
The second of EQs. (2.9 ) implies that along the straight lines 

n2 = PGh P* = (v - q-l (2 z.t V(3 - y)(y + I))> 0 (2.10 1 

the Jacobian J vanishes, and the equations of streamlines are of the form 

Xi 

rfl o*=--, 
3y - 1 U 6% (U_, u+), D, = const 

Uf =(Y- 11-l (- 2Y t V(3Y - 1) (Y + 1)) < 0 

There are also two straight streamlines 

52 = U*Xr 

(2.11) 

(2.12) 

to which all streamlines asymptotically approach when u + U* . The speed of sound, 
contrary to the case of (1.16)) indefinitely increases with increasing distance from the 
coordinate origin. 

To determine the flow as a whole without limit lines it is necessary to consider as 

the region of flow in the hodograph plane, the sectors in the second or fourth quadrants 

bounded by the straight lines 
u, = u*ur (2.13 1 

By virtue of (2.10) the Jacobian J does not vanish within these sectors and the 

passing to the x1, xs -plane using (2.9) is unambiguous. In the x1, z2 -plane the 

straight line z1 = x2 corresponds to the bisectrix of sectors (ur + u. = 0) . The 
speed of sound indefinitely increases with the increasing distance along that line from 

the coordinate origin when x1 = zs < 0 . 
The asymptotes (2.12) and (2.13 ) and two streamlines lr and Ia which form a 

channel in which flows a supersonic stream of gas are plotted in Fig. 2 in the hodograph 
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andthe zr,zs-planesfor y = 1.4,. Asinthecaseof(1.16), for 2\(~<3 
a subsonic zone bounded by two sonic lines (that for y = 2 merge with the line xl 

= X2 > and containing the bisectrix x1 = 5s appears in the flow. 

Note. If the sectors bounded by the straight lines (2.3 ) in the hodograph planes 
which encompass the first or third quadrants are used for defining the flow region in the 
hodograph plane, it is not possible to construct a flow which, as a whole, is free of 

limit lines. 

Fig. 2 

3 , The flow of gas defined by formulas (2.3 ) and (2.5 ) , whose particular cases 

are shown in Fig. 1 are determinate in the whole plane 1 $2 ) < 00, which contains 

the regions of vacuum w and of flow T. We shall derive the solution of the fol- 

lowing problem. Let the steady flow (2.3), (2.5) in a gravity field define the input 
data of the Cauchy problem in the plane 1 xk ( .< 00 for the unsteady solutions of 

gasdynamics with independent variables z~, zs, and t in the absence of mass forces. 

Solution of that Cauchy problem corresponds to that of the problem of unsteady scatter of gas 

from region T into vacuumtwith the gravity field instantaneously cancelled at the instant 
of time t = 0 

We set Er = Xk - a a 
2 t, v (J&G, t) = U (%I, %a) + at 

(3.1) 

where cc = (a, a), u = (u,, ua) and u (El, %,) is calculated by formulas (2.5 ) 

in which %k is substituted for zk , We determine the speed of sound by the formula 

c2(%1, % ) = (v - 1) [K - a%1- a%2 --/2(Q(%l, Ez) -t- zQ(%l, %a))] 
(3. ‘2 1 
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Then formulas (3.1) and (3.2) provide the solution of the formulated Cauchy prob- 
lem that is definite for all t E (0, m> and ~xk~<oo* The unsteady 
equations of gasdynamics are satisfied in the absence of mass forces because the intro- 

duced system of coordinates El, Es moves with constant acceleration along the bi- 
se&ix of the first angle of coordinates. Since for t = 0 T;k = xk, v = u 

(% XZ) and c (& E2) = c h, %I, the stated initial data of the Cauchy problem 
are satisfied. The obtained solution corresponds to a rarefaction at all t. The dis- 
charge front into vacuum from region T is formed by two planes 

x2 = q*x,+a 

- - 
Q 1/3r-l1(1/3y-l1~~)t2 

that intersect at t > 0 on the bisectrix of the first quadrant. The rate of discharge 

into vacuum indefinitely increases with the increase of t. 

The author thanks 0. B. Khaimllina for assistance in checking calculations 

carrying out computations. 
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